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This overview covers the different chemometric strategies linked to chromatographic methodologies
that have been used and presented in the recent literature to cope with problems related to incomplete
separation, the presence of unexpected components in the sample, matrix effect and changes in the
analytical signal due to pre-treatment of sample.
hemometrics
econd-order data
ignal pre-treatment

Among the different chemometric strategies it focuses on pre-treatment of data to correct background
and time shift of chromatographic peaks and the use of second-order algorithms to cope with overlapping
peaks from analytes or from analytes and interferences in liquid chromatography coupled to diode array,
fast-scanning fluorescence spectroscopy and mass spectrometry detectors. Finally the review presents
the strategies used to deal with changes in the analytical response as result of matrix effect in liquid
and gas chromatography, as well as the use of standardization strategies to correct modifications in the

eque
analytical signal as a cons

. Introduction

Developing a chromatograpic method generally implies opti-
izing the experimental conditions, in order to guarantee complete

eparation of all sample components [1]. In chromatography, the
etention factor (k) is the degree of retention of the sample com-
onent in the column. In most chromatographic analysis, analytes
lute with retention factors between 1 and 20 allowing their com-
lete separation. A peak with k equal to 0 is a component that does
ot interact with the stationary phase and elutes in the void vol-
me [2]. Chromatographic separations can become a difficult task
hen complex samples have to be analyzed. The main drawbacks

nvolved in handling complex samples are that the nature and the
mount of the co-eluting matrix compounds may be rather vari-
ble between samples, in such a way that matrix effects in a series
f samples can also be highly variable and difficult to predict [3].

Nevertheless, the use of chemometrics may provide a useful

esource for accurate analyte quantitation when the complete sep-
ration is not accomplished or new compounds are present in
he sample being analyzed [4]. Chemometrics is especially use-
ul in chromatography when second-order data are recorded, for
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nce of sample pre-treatment in liquid chromatography.
© 2010 Elsevier B.V. All rights reserved.

example, using a diode-array detector (DAD), a fast-scanning lumi-
nescence or a mass spectrometry based (MS) detector during the
chromatographic time evolution. An interesting intrinsic property
that second-order data may show (if they are modeled with con-
venient second-order algorithms) is the so-called “second-order
advantage” [5], which in principle permits analyte quantitation in
samples containing unexpected components, i.e., compounds not
included in the calibration set [6]. This fact allows one to build a pre-
dictive model with a limited number of standards, yet quantitating
the analyte in the presence of potential interferents [6].

The use of second-order multivariate algorithms has been
shown to play a critical role in several analytical fields, as can be
gathered from a literature survey in relevant analytical, chemomet-
rics and applied journals [6,7]. Specifically, an important number
of reports have been presented focusing on the resolution of
really complex samples using liquid chromatography and exploit-
ing the mentioned second-order advantage [8–12]. In this context,
extremely important issues such as reduction in the time of anal-
ysis and consequently costs and amount of contaminant solvents
should be considered [12].

Several algorithms can be cited among the approaches involving
the second-order advantage: generalized rank annihilation (GRAM)

[13], direct trilinear decomposition (DTLD) [14,15], self-weighted
alternating trilinear decomposition (SWATLD) [16], alternating
penalty trilinear decomposition (APTLD) [17], parallel factor analy-
sis (PARAFAC) [18], multivariate curve resolution alternating least
squares (MCR-ALS) [19], and the most recently implemented bilin-
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ar least squares (BLLS) [20], unfolded partial least squares/residual
ilinearization (U-PLS/RBL) [21] and artificial neural networks fol-

owed by residual bilinearization (ANN/RBL) [22].
Interestingly, a k value lower than 1 does not result in a differ-

ntial migration of the component and originates dissimilarities in
oth times of elution and peak shapes, leading to data without the
roperty of trilinearity. Second-order data are trilinear when each
ompound in all experiments treated together can be described by
triad of invariant pure profiles [23]. In chromatography with DAD
etector, each analyte should have the same time and spectral pro-
le in all the samples and only differs in the amount in which it

ntervenes. In this situation, algorithms such as MCR-ALS (which
an solve this type of problems by resorting to the mathemati-
al resource of matrix augmentation) and PARAFAC2, a variant of
ARAFAC allowing for distinct time profiles in each experimental
ample [24], have been proved to be useful alternatives for treating
hese data since they are more flexible with regard to trilinearity
25,26]. However, when data are conveniently pre-treated in order
o alleviate the above-mentioned problems, good results can be
btained using GRAM, PARAFAC or RBL based algorithms [10,27].

In the present review we describe different chemometric strate-
ies that have been used and presented in recent literature reports
o cope with the problem of incomplete separation, especially,
hen non-modeled components appears in the sample.

. Pre-treatments of data

In a previous paper, Daszykowski and Walczak [4] pointed
ut that chromatographic performance can be enhanced by elim-
nating noise and background components, thus becoming the
hromatogram baseline elimination a crucial step for reducing
oth the complexity and the number of the unexpected com-
onents. Moreover, it was demonstrated that the use of signal
re-treatments such as baseline and time shift corrections improve
he quality of second-order chromatographic signals and, as a
onsequence, the performance of resolution by second-order algo-
ithms [9–11,28]. In the present section, different strategies which
ere developed with these aims and reported in the literature will

e revised.

.1. Background correction

A proper pre-processing step is crucial to determine the quality
f chromatograms, influencing the final results of chromatographic
nalysis. Chromatograms (as any other instrumental signal) contain
hree major components: signal, noise and background, which dif-
er in their frequency [4]. Signal enhancement can be achieved by
liminating noise and background components. As was stated pre-
iously, elimination of the chromatogram baseline could result in a
ritical step for reducing complexity of the analytical task. There are
everal algorithms that can be useful to overcome this problem, the
ormer attempts probably being made by Cecil and Rutan [29]. They
orked with fluorescence detection in liquid chromatography with

n intensified diode-array detector and the data analysis methods
sed included Kalman filter-based methods for adaptive subtrac-
ion of background responses, shift correction and linear regression
nalysis of overlapped responses. After that, a new procedure for
etecting and correcting baseline offset/drift and spectral back-
round in hyphenated chromatographic data was presented by
rereton and co-workers [30], which was based on congruence

nalysis and least-squares fit of the zero-component regions. The
rocedure consists of several different steps: first, the major princi-
al components in the zero-component chromatographic regions
re extracted before the appearance of the first eluting chemical
onstituent and after elution of the last chemical constituent in a
83 (2011) 1098–1107 1099

peak cluster. Then, comparison of the loading patterns of the first
principal component in the two zero-component regions by means
of congruence analysis was used to reveal the presence of a constant
spectral background and/or systematic baseline offset or drifts. If
baseline drift is revealed, the baseline for the whole chromatogram
is estimated by means of a least-squares fit of the data from the two
zero-component regions with retention time as ‘independent’ vari-
able. A background-corrected chromatogram is finally obtained by
subtracting the estimated spectral background and the estimated
baseline from the original data.

Recently, with the increasing of the use of second-order data,
several algorithms have been proposed. One of them is the
methodology presented by Eilers, i.e., the asymmetric least-squares
method [31], which was recently adapted to multidimensional data
[32]. This method consists in the matrix background estimation
F (J × K) from the data matrix M (J × K), where J is the number of
digitized wavelengths and K the number of migration times. For
achieving this purpose, a B1 (L × J) spline basis matrix along the
rows of the M matrix and a B2 (M × K) spline basis matrix along
the columns of the M matrix are used. Generally, the literature [33]
suggests a compromise of 10 basis function, i.e., L = M = 10. F can be
represented as:

fj,k =
∑
L,M

b1LJb2MK aLM (1)

where aLM is the (L,M) element of a matrix A containing the
regression coefficients, which can be calculated by minimizing the
following cost function:

Q =
∑
L,M

�JK (yJK − fJK )2 + p (2)

where y is the experimental signal, f a smooth trend (the base-
line approximation), and � are the prior weights. The elements of �
should have large values in the parts of the signal where it is allowed
to affect estimation of the baseline. Consider the following choice of
asymmetric weights: �JK = p if �JK > fJK and �JK = 1 − p if �JK ≤ fJK with
0 < p < 1. Positive deviations from the trend will result in weights
different from negative residuals. Experience shows that starting
from � ∼= 1, and iterating between the two computations, quickly
and reliably leads to a solution in about 10 iterations. Finally, in Eq.
(2) there is a penalty term defined by:

P =
[∑

L

(
�d

1aL

)2 +
∑

L

(
�d

2aM

)2

]
(3)

where � and �2 are differences of order d calculated for each
column of A (aL) and each row of A (aM), respectively. As can
be seen in Eq. (3), if different values are used for the regulariza-
tion parameter �, the penalty may have different influences for
vertical and horizontal directions. As an example, Fig. 1A shows
an original 3D chromatogram corresponding to the determination
of 11 pharmaceuticals in river water (for more details see Ref.
[11]). The landscape corresponds to a data matrix M (40 × 302),
which was obtained with a HPLC-DAD system, using a wavelength
range between 200 and 350 nm. As can be appreciated in this
figure, a significant baseline is originated during the chromato-
graphic procedure. The matrix background estimation F (40 × 302)
by implementing the asymmetric least-squares method can be
seen in Fig. 1B. This matrix was obtained setting L = M = 10 and an

asymmetry parameter (p = 0.005) [see Eq. (2)]. The subtraction of
F matrix to M matrix furnishes the corrected matrix, whose rep-
resentation can be observed in Fig. 1C. Finally, in order to have a
better visualization of the effect of base line subtraction, the chro-
matograms registered a 245 nm are represented in Fig. 2.
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Fig. 1. (A) Landscape obtained by HPLC-DAD corresponding to a water river sample
obtained after spiking the river water sample with different concentrations of the
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Fig. 2. Chromatogram (registered at � = 245 nm) of a water river sample obtained
after spiking the river water sample with different concentrations of the analytes
(sample R1-1 of Ref. [11]) (blue solid line), the base line calculated at the same wave-
length (green point-dashed line), and the corrected chromatogram by subtraction of
nalytes (sample R1-1 of Ref. [11]) in the time region of 30–34 min. (B) Background
atrix corresponding to the landscape of (A). (C) Landscape obtained by subtraction

f the background to the landscape of (A).

On the other hand, on-line coupling between LC and FT-IR
ecomes a difficult task: as the mobile phases employed in LC
bsorb strongly in the midinfrared, their accurate compensation is

rucial to obtain characteristic analyte spectra. In the case of on-line
socratic LCFT-IR systems, correction for mobile phase absorp-
ion can be carried out by subtracting the spectra of the eluent
ecorded at the beginning of the run or immediately before elu-
the base line to the original chromatogram (red dashed line). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of the article.)

tion of the analytes of interest from the spectra when the analyte
elutes.

However, when using the gradient technique, accurate back-
ground correction presents important difficulties because of
existing changes in intensity and shape of the eluent absorption
bands, which may be up to several orders of magnitude more
intense than the absorption due to analytes. Different chemo-
metric techniques have been proposed to overcome this problem.
Among them, a method named objective subtraction of solvent
spectrum has been proposed by Istva’n along with iterative use
of PARAFAC and PARAFAC2 which yielded promising results when
analyzing isocratic LC-IR data sets [34,35]. Afterward, univariate
and multivariate methods have been developed by Quintás et al.
to perform eluent subtraction in continuous liquid flow systems
under isocratic and gradient conditions [36–38]. These algorithms
use a data set recorded from a gradient experiment without inject-
ing any analyte. By matching characteristic absorption bands of
the eluents in the chromatographic run with those of the refer-
ence data set, it is possible to select or to calculate an appropriate
background spectrum for recovering the analyte spectra. Detailed
descriptions of the procedure and examples of its application can
be found in the former work [36]. Very recently, the algorithm
has been successfully applied to the chromatographic separation of
four nitrophenols [39] and these authors have published a review
about the advances in isocratic and gradient liquid chromatography
hyphenated on-line with infrared (LC-IR) spectrometry, placing
particular emphasis on chemometric background correction and
other applications of chemometric algorithms used to improve the
sensitivity and the resolution of LC-IR signals [40].

Ramis-Ramos and co-workers [41] presented an automatic two-
way background correction using cubic smoothing splines (CSS)
and multivariate data analysis to two-way electropherograms,

which were automatically processed, with minimal supervision by
the user, in less than 2 min.

A simple background elimination method for Raman spectra,
based on peak detection, smoothing, and interpolation was pro-
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ig. 3. Top: contour plots for matrices N and M corresponding to the determinatio
AD detector (see Ref. [53]) before the alignment. Bottom: the same matrices after

osed by Baek et al. [42]. The authors postulate that since the
ackground is usually slowly varying with respect to wavelength,
hey could estimate the background by eliminating significant
eaks. They seek the peaks by inspecting the smoothed derivative
f a given spectrum, and after clipping out the corresponding peak
egions, an estimation of the background by applying a modified
inear interpolation was performed.

A novel technique for removal of three-dimensional background
rift in comprehensive two-dimensional (2D) liquid chromatogra-
hy coupled with diode-array detection (LC × LC-DAD) data was
roposed by Yu and co-workers [43]. The authors worked on
he basic idea of performing trilinear decomposition, based on
he alternating trilinear decomposition (ATLD) algorithm, on the
nstrumental response data. A model was built taking into account
he background drift as one component or factor as well as the ana-
ytes of interest, hence, the drift being explicitly included into the
alibration.

.2. Time shift correction
When applying second-order algorithms, especially for meth-
ds such as GRAM, PARAFAC, BLLS and U-PLS/RBL, peaks should
e properly aligned in order to assure trilinearity in the data.
everal approaches have been presented in the literature for syn-
hronization of the time axes. This procedure is called warping or
rbamazepine in the presence of interferences using capillary electrophoresis with
ent by shifting 64 data points matrix M in the direction of the arrow.

alignment, and as will be seen, it is a crucial subject when ana-
lyzing complex samples. If a proper alignment can be applied, the
posterior data analysis would be simplified, but it has been shown
that there are some cases in which shift correction can not be
implemented [12,44]. The latter fact happens when potential inter-
ferences coelute with the analytes. In the present review, several
approaches will be commented, and a brief description of the most
important ones will be made.

The alignment algorithms are based on different basic philoso-
phies. In a first group, advantage of the matrix data structure
is taken: rank alignment (RA) [45,46] and iterative target trans-
formation factor analysis (ITTFA) [47,48]. In a second group, the
maximum correlation between chromatograms is sought: the
so-called ChromAlign algorithm [49] and correlation optimized
warping (COW) [50–53]. Finally, a suitably initialized and con-
strained PARAFAC model can be used [44]. It should be noted that
taking into account that the presence of potential interferences in
unknown samples poses severe challenges to the above-mentioned
alignment algorithms, especially for the second group of algo-
rithms, these will not be commented.
The RA algorithm is based on the singular value decomposition
(SVD) of an N/M matrix, joining the data matrices N and M, where
N is taken as reference and M is the matrix which has to be cor-
rected in relation to N. The correction is carried out by computing
the residual variance (RES) while the matrix M is moved in relation
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Fig. 4. Residual variance computed for the augmented N/M matrix when shifting M
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solid blue line). The dashed red line shows the residual variance computed for an
ugmented N/N matrix. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of the article.)

o N, using a pre-established number of points that can be esti-
ated by the inspection of the chromatograms of N and M. The

umber of significant singular values should ideally be equal to the
umber of species present in N|M. When the matrices N and M
re aligned, the RES values should reach a minimum. It should be
oted that problems appear when the test sample contains inter-

erences highly overlapped with the analyte peak, and more than
ne minimum is obtained. In contrast, in the ITTFA algorithm the
alibration and test matrices are independently decomposed into
rofiles and spectra, and aligned before the second-order method

s applied [47]. At the top of Fig. 3 it is shown the contour plots
or matrices N and M (used to build the augmented N/M matrix)
efore the alignment. Matrixes N and M correspond to the deter-
ination of carbamazepine in the presence of interferences using

apillary electrophoresis with DAD detector (see Ref. [54]). As can
e seen in this figure, there is a difference of c.a. 1.5 min between

he reference matrix (N) and the one to be corrected (M). If matrix

is moved 64 data points in the direction indicated by the arrow, a
inimum in the RES value is reached. This fact can be more clearly

ppreciated in Fig. 4.

able 1
lgorithms employed to model second-order chromatographic data with calibration purp

Application

Building three-way arrays

Arranging the second-order data set into an augmented matrix

Combining the unfolded variants with the RBL procedure in
order to exploit the second-order advantage

Combining the three-way array of N-PLS with the RBL
procedure in order to exploit the second-order advantage
a 83 (2011) 1098–1107

Finally, the PARAFAC alignment is based on analyzing the fit
of a PARAFAC model for a three-way array built with matrices N
and M placed on top of each other. If potential interferents coelute
with the analytes, the correct alignment of M with respect to N
requires two bilinear contributions, i.e., two spectral-time reten-
tion matrices (one for the analyte and one for the interferent). On
the other hand, the incorrect possibility should in principle require
three bilinear components: two of them correspond to the ana-
lyte (having the same spectrum but different peaks in the time
dimension), and the remaining one to the interferent. Other possi-
bilities to correct peaks misalingned will also require three bilinear
components. Therefore, a suitably initialized and restricted two-
component PARAFAC model will only yield a reasonable fit when
the correct alignment is performed. As can be observed, this method
exploits the matrix structure of the studied data in order to align
the test data matrix with respect to the reference one [44].

3. Second-order algorithms

As was mentioned above, coupling chromatography or capillary
electrophoresis with either diode array, fast-scanning fluorescence
or mass detectors originate second-order data. The spectroscopic
response is therefore arranged as a data matrix, where each col-
umn corresponds to a wavelength (or m/z ratio) and each row
corresponds to a different time. Interestingly, in those cases in
which full selectivity in the chromatographic separation is not
achieved, calibration can be performed, and quantitation can be
accomplished in the presence of unexpected constituents and only
synthetic standards are necessary for the model development, in
those cases in which there is not matrix effect (see above). Thus,
a data set for several samples (unknowns plus standards) can be
conveniently arranged into different modes: (a) to build a three-
way array (PARAFAC, PARAFAC2, GRAM, DTLD, APTLD, SWATLD
and N-PLS), (b) to arrange the second-order data set into an aug-
mented matrix, as is regularly done in MCR-ALS; (c) to vectorize the
higher-order sample data and then employ first-order multivariate
methods (the unfolded variants of PLS or ANN); (d) to combine the
unfolded variants with the RBL procedure in order to exploit the
second-order advantage (BLLS, U-PLS/RBL and ANN/RBL); and (e)
to combine the three-way array of N-PLS with the RBL procedure
in order to exploit the second-order advantage, as this property is
not fulfilled by this latter algorithm (see Table 1). All of these algo-
rithms allow for the development of the so-called second-order
From an analytical point of view, the main object of using
second-order data is to assure exploiting the second-order advan-
tage. For this purpose, two alternative ways are possible [6]: (a) data
for the test sample has an influence on the regression coefficients

oses.

Algorithm References

PARAFAC [10,28,47,48,58,64]
PARAFAC2 [9]
GRAM [47,48,82,84,85]
DTLD [15]
APTLD [57]
SWATLD [16]
N-PLS [24]

MCR-ALS [9,10,12,47,48,59–63,65–71,83,85]

BLLS [28,58]

U-PLS/RBL [59,60]

N-PLS/RBL [10]
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eading to prediction (PARAFAC, PARAFAC2, GRAM, DTLD, APTLD,
WATLD and MCR-ALS) or (b) calibration is first performed using
nly training data, with the test sample leading to sample-specific
egression coefficients in a subsequent step (BLLS, U-PLS/RBL, N-
LS/RBL and ANN/RBL).

Comprehensive information about the different second-order
lgorithms can be found in the pertinent literature [13–21]. In
ddition, complete reviews were presented with a wide range
f applications to second-order data (including chromatography)
6–8]. Thus, in this review we will revise the most recent and
mportant applications, especially in those cases in which complex
amples were analyzed and overlapping peaks had to be solved
ecause of incomplete selectivity due to insufficient separation
mong analytes or the presence of unexpected components in the
ample.

As was previously discussed, when data are not trilinear, there
xist algorithms which can overcome this problem, and calibration
an be performed without pre-treatment of the data (see above).
he most popular one is MCR-ALS [19], which resorts to the math-
matical resource of matrix augmentation. Alternatively, several
pplications of PARAFAC2 have been recently presented, which
llows for separate time profiles in each experimental sample [55].
n the other hand, when data are conveniently pre-treated, good

esults have been presented by applying GRAM, PARAFAC or RBL
ased algorithms [6,10,44,56].

.1. UV spectroscopy with diode-array detection

Li et al. presented a method based on modeling LC-DAD data
ith the alternating trilinear decomposition (ATLD) algorithm for

he quantitative analysis of levodopa, carbidopa and methyldopa
n human plasma samples. Although the spectra of these analytes

ere similar and interferents coeluted with the analytes studied in
iological samples, good recoveries of the analytes were obtained,
ith additional benefits like decreasing times of analysis and less

olvent consumption [57].
Braga et al. presented the simultaneous determination of

ve pesticides and two metabolites in wine samples by HPLC-
AD, using the second-order advantage. The authors compared

wo chromatographic methods, which involve either isocratic or
radient elution. Due to loss of trilinearity, an appropriate pre-
rocessing method was necessary to correct the effects of time
hifts, baseline variations and background. BLLS yielded results that
ere of the same quality as PARAFAC in five cases, but in two

ther situations only PARAFAC enabled analyte quantitation [28].
n a posterior work, these authors presented a variable selection

ethodology based on genetic algorithm to improve the results
58].

Several methods were developed in our group to be applied
n the quantitation of diverse analytes in environmental sam-
les by modeling liquid chromatography data with MCR-ALS and
-PLS/RBL algorithms. Firstly, eight tetracycline antibiotics were
etermined in effluent wastewater, solving matrix effects and
xploiting the second-order advantage [59,60]. Afterward, the
etermination of anti-inflammatory and antiepileptic drugs in
iver and wastewater by solid-phase microextraction and liquid
hromatography diode-array detection with MCR-ALS was pre-
ented [61]. The following study included 11 pharmaceuticals
hich were quantitated in river water by column switching of

arge sample volumes and HPLC-DAD, modeling with MCR-ALS
62]. Additional works involved the determination of dyes in bev-

rages reaching a considerable reduction of the analysis time [12],
nd the resolution of fully overlapped capillary electrophoresis
eaks applied to the quantitation of carbamazepine in human
erum in the presence of several interferences [63]. It should be
oticed that, owing to the complete overlapping among three of
83 (2011) 1098–1107 1103

the analytes, the only algorithm capable of resolve this task was
MCR-ALS.

In a study presented by Vosough et al., a second-order calibra-
tion strategy for the simultaneous determination of aflatoxins B1,
B2, G1 and G2 in pistachio nuts in the presence of matrix inter-
ferences has been developed combining HPLC-DAD and PARAFAC.
Sample preparation was based on solvent extraction followed by
solid-phase extraction. Since the sample preparation procedure
was not selective to the analytes of interest, exploiting second-
order advantage to obtain concentrations of individual analytes
in the presence of uncalibrated interfering compounds was nec-
essary. Appropriate pre-processing steps were applied to correct
background signals and the effect of retention time shifts. The pro-
posed method presented advantages like using a low-cost SPE step,
a unique and simple isocratic elution program for all samples and a
calibration transfer for saving both chemicals and time of analysis
[64].

Finally, MCR-ALS was evaluated in the analysis of nine phenolic
acids, both in standards mixture samples and in strawberry juice
samples by LC-DAD. Chromatographic co-elution problems either
because of unknown matrix interferences or because of the increase
of organic modifier to reduce chromatographic analysis times were
investigated. Results obtained in the resolution and quantitation of
phenolic acids in standards mixture samples and strawberry sam-
ples showed that the proposed MCR-ALS approach reduces analysis
times and solvent expenses and improves determinations in case
of strong co-elution [65].

A reduced number of CE-DAD applications can be found in the
literature, most of them based on MCR-ALS modeling. This fact
is due to this technique generally originates data which are not
trilinear. Several ebrotidines metabolites were analyzed and pure
spectra and electrophoretic profiles were conveniently extracted
by MCR-ALS in a study presented by Sentellas et al. [66]. In addi-
tion, Li and co-workers presented several strategies to enhance the
quantitation of several analytes combining CE-DAD data and MCR-
ALS [67–69]. Finally, we presented a challenging application in
which three analytes, whose peaks were totally overlapped, could
be determined in serum samples with acceptable analytical figures
of merit [54].

3.2. Fast-scanning fluorescence spectroscopy (FS-FS) detection

It is important to notice that a reduced number of applications
in this area have been presented. In a study carried out by Cañada-
Cañada et al., different second-order algorithms were compared
(PARAFAC, N-PLS/RBL and MCR-ALS) for the analysis of four fluo-
roquinolones in aqueous solutions, including some human urine
samples. Data were measured in a short time with a chromato-
graphic system operating in the isocratic mode. The detection
system consisted of a fast-scanning spectrofluorimeter obtaining
second-order data matrices containing the fluorescence intensity
as a function of retention time and emission wavelength. Interest-
ingly, although the analytes presented overlapped profiles, it was
not necessary to apply an elution gradient, and thus significantly
reducing both the experimental time and complexity [10].

In a very recent and interesting application presented by Bor-
tolato et al., the analysis of 10 polycyclic aromatic hydrocarbons
(PAHs) was performed. The goal of the work was the successful
resolution of a system even in the presence of real interferences.
Second-order HPLC-FS-FS data matrices were obtained in a short
time with a chromatographic system operating in isocratic mode.

The difficulties in aligning chromatographic bands in complex sys-
tems were discussed. Two second-order calibration algorithms
which do not require chromatographic alignment were selected
(MCR-ALS and PARAFAC2), the superiority of MCR-ALS to success-
fully resolve this complex system [9], being demonstrated.
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.3. Mass spectrometry detection

Pere-Trepat et al. applied MCR-ALS to solve co-elution problems
n liquid chromatography with DAD and MS detection. Interest-
ngly, a MCR-ALS property allowing the fusion of both detector
ignals improved results versus those obtained using only one of
he two detector signals. Wavelet transform had to be applied to

S data before its fusion with DAD data, which further facilitated
he resolution and quantitation of the coeluted compounds under
tudy, besides a decrease of time of analysis. Mixtures of biocide
ompounds in standard mixtures and in environmental samples
sediment and wastewater samples) were analyzed with accept-
ble quantitation errors considering the complexity of the samples
70].

Finally, in an application to a metabonomic study, a chemomet-
ic strategy based on MCR-ALS applied to LC–MS in the scan mode
as developed by our group to perform a metabonomic study in

omato fruits following treatment with carbofuran. The methodol-
gy proved to be adequate for the detection of unintended stress
ffects due to the previous treatment with this pesticide. MCR-ALS
as performed on augmented matrices built with the data obtained

rom treated and nontreated samples through the sampling time.
y applying this strategy the concentration and spectra profiles of
he main components were obtained from samples treated with
esticide as well as from blank samples, showing how they vary
ith time after plants treatment with the pesticide. In addition,
simple resolved mass spectrum was obtained corresponding to

he peaks of a particular component in all matrices, thus avoiding
mbiguity in the compound identity assignment. Different time
rofiles were found for some metabolites in treated and nontreated
amples, which demonstrate that the presence of pesticide causes
hanges through time in the behavior of certain endogenous
omato metabolites as a result of physiological stress [71].

. Variations in the analytical response

Generally, quantitation of analytes in real samples is performed
sing calibration models built with standards prepared in pure sol-
ent. However, in some cases it can be observed that the analyte
esponse in real samples is different from the one obtained for ana-
ytes prepared in pure solvents. Apart of background and additive
nterferences, the main causes of the variation in the analyte sig-
al are due to the phenomenon known as matrix effect and to the

mplementation of treatment steps prior to the measurement of
nalyte, such as extraction or clean-up steps.

In multivariate (as in univariate) calibration methodologies, the
orrection of changes in the analyte signal of real samples requires
he application of different strategies depending of the type of phe-
omena that causes these changes.

Three classes of strategies have been proposed to correct the
atrix effect: (a) based on sample handling, e.g., selective extrac-

ion, effective sample clean-up after extraction or improvement
f the chromatographic separation, (b) based on the reduction of
atrix components injected onto the chromatographic system,
hich can be performed by simply injecting smaller volumes in

he chromatographic system or by diluting the sample extract; and
c) based on suitable calibration approaches, e.g., the use of inter-
al standards, matrix-matched standards and standard addition of
ach analyte into each sample.

Strategies included in the first group require an additional effort,
re rather time consuming [72], in some cases the problem persists,

nd, in addition, they can cause losses of the analytes related to
xtraction and/or clean-up process.

On the other hand, each of the approaches used to reduce matrix
omponents loaded on the detector involves a lack of sensitivity
73].
a 83 (2011) 1098–1107

The third group of strategies also shows some drawbacks. Thus,
matrix-matched standards are often used to correct the matrix
effect in spite of the great drawback which involves the availabil-
ity of real samples not containing the analytes of interest (i.e., real
blank samples). In addition, as matrix effect is attributed to organic
and/or inorganic components of the sample co-eluting with the
analytes and interfering during the detection process, it is matrix
dependent being rather variable between samples, in such a way
that matrix effect in a series of samples can also be highly vari-
able and difficult to predict [74]. Therefore, errors in the prediction
should be expected when using only a matrix-matched curve for
the quantitation of analytes in all different sample matrices.

According to Benijts et al. [75] the best way to tackle matrix
effect is to use appropriate internal standards, being preferred an
isotopically labeled one, even though they are not regularly avail-
able and alternatively structural analogues are used [76]. On the
other hand, the internal standard had to elute close to the com-
pound of interest, showing similar behavior in the detector, in such
a way that more than one of them should be used [77]. It is gen-
erally observed that using internal standards derives in significant
enhancement of certain analytical figures of merit such as precision,
linearity and accuracy.

The standard addition methodology implies the addition of
increasing amounts of a standard of the analytes to several portions
of sample (n = 4–6) to build the calibration curve for the quantita-
tion of the analytes in each sample. Even though their use requires
a great amount of sample and, in addition, it leads to a signifi-
cant increase in analysis and processing time, as one calibration
curve must be built for analyzing each sample, nowadays it is the
only fairly effective methodology dealing with matrix effect. An
interesting example of calibration using internal standard with
second-order data for an experiment with CE-DAD data was pre-
sented by Zhang and Li et al. [69].

Finally, the standardization of the analyte signal has been cur-
rently used to compensate changes in the analytical signal, which
are due to the implementation of treatment steps prior to the mea-
surement of the analytes, such as extraction or clean-up. The most
widely used methodology for standardization is piecewise direct
standardization (PDS) [78], which consist of relating the response
of a sample measured in a “situation A” to its response obtained in
a “situation B”. This relationship is described by the transformation
matrix Ft, according to

XB = XAFt (4)

where XA and XB are the response matrices of the standardization
samples obtained from the A and B conditions, respectively. PDS
builds a multivariate model between the response r of a sample
measured at the jth wavelength in the situation A and the corre-
sponding window (a selected region) of the response obtained on
situation B:

rj = Rjbj (5)

where Rj is the localized response matrix of the transfer samples
and bj is the vector of transformation coefficients for the jth wave-
length. The regression vectors calculated for each window in the
data are then assembled to form a banded diagonal matrix Ft,
according to

Ft = diag(bT
1,T

2, . . . bT
j , . . . bT

k) (6)

where k is the number of wavelengths. The response of any
unknown sample (xs) can then be standardized according to the

equation:

xs = xTF (7)

All these approaches have been successfully applied to univari-
ate data, but recently, a number of papers have been published,
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hich report the application of some of the above-mentioned
ethodologies in combination with second-order multivariate

lgorithms, with satisfactory results [8,59,60,64].

.1. Strategies based on calibration approaches (standard
ddition and internal standard)

In analytical chemistry, the standard addition method has been
mployed to perform quantitative analysis in situations where
xternal calibration is not feasible, basically to overcome the prob-
em of changing matrix effects [79]. Matrix effect occurs when the
ample contains organic and inorganic components that not give
response but coelute with the target analytes [80] causing varia-

ions in their responses, thus affecting sensitivity and accuracy of
he analytical method and therefore producing relative systematic
rrors. Matrix effect occurs especially in chromatographic tech-
iques coupled with mass spectrometric detection (MS) due to a
uppression of the ionization efficiency of the analytes in the pres-
nce of co-eluting substances and coupled with UV or fluorescence
etectors due to a suppression or enhancement of the signal as the
esult of the interactions of the analytes with other matrix com-
onents which modify their absorptive or emissive properties. As
tated above, this behavior may be rather variable between sam-
les, in such a way that matrix effects in a series of samples can
lso be highly variable and difficult to predict [81]. Therefore quan-
itation should be carried out by applying the standard addition

ethod, as this methodology assures that the standards used in the
alibration step are undergone to the same effect that the analytes
ontained in the analyzed samples.

The hardly difficult issue related to the analysis of highly
omplex samples may be handled using second (and higher)
rder data from hyphenated techniques coupled to multivariate
alibration algorithms involving the second-order advantage in
ombination with the standard addition methodology. The second-
rder advantage allows accurate quantitation of multiple analytes
sing calibration samples containing multiple chemical compo-
ents without knowledge of the interfering chemical components
hereas standard addition copes with matrix effect. This method-

logy has been widely used with spectroscopic data whereas a
ess number of applications have been published using chromato-
raphic techniques.

.1.1. Liquid chromatography
Gimeno et al. [82] applied GRAM combined with standard

ddition to quantify polycyclic aromatic compounds in marine sed-
ments by liquid chromatography with diode-array detection. This
econd-order algorithm was applied to three-way data obtained
sing a program gradient not requiring the complete separation
f analytes and was compared with a previously optimized uni-
ariate method for these analytes in the same real samples with
onger analysis time. The similarity of the results obtained using
RAM with those obtained with univariate calibration showed that
econd-order methodology is advantageous in situations in which
he analytes cannot be completely separated or the analysis would
e time consuming if complete separation is achieved. In both cases,
hey found the added advantage that the standard addition method
ucceed the quantitation of target analytes in samples with matrix
ffect.

Recently, in our group the second-order algorithm MCR-ALS was
pplied in combination with standard addition calibration for the
etermination of drugs in environmental water samples by LC-DAD

61,62]. In a first work, eight pharmaceuticals were determined in
astewaters samples [59] containing compounds interfering with

he analytes of interest with a variable effect between samples,
n addition to matrix effect. MCR-ALS coped with the problems of
verlapped interferences whereas the standard addition corrected
83 (2011) 1098–1107 1105

the different behavior of the wastewater matrix in the response
of the analytes. Then, MCR-ALS was applied in combination with
the standard addition calibration method to deal with overlapping
peaks and systematic (additive) and proportional (matrix effect)
errors in the determination of eleven pharmaceuticals by LC-DAD
in river water samples [62].

Finally, Tauler and co-workers [83] applied different approaches
in combination with MCR.ALS for the quantitation of six biocide
compounds in mussel samples, undergone to co-elution and to
matrix effect in LC–MS. Among the three calibration strategies used
(external calibration, standard addition and internal standard),
multivariate extension of the standard addition method using MCR-
ALS provided an improvement in the results which was increased
when internal standard was additionally used on the same mussel
matrix sample.

4.1.2. Gas chromatography
The application of second-order algorithms to three-way data

generated in gas chromatography (GC) using standard addition
is more limited that in LC. In our knowledge, only two papers
reported the application of second-order methodologies in com-
bination with standard addition to quantify analytes in complex
samples that causes matrix effect in the GC responses. In this sense,
Fraga et al. [84] used GRAM with two-dimensional GC (GC–GC) cou-
pled to a flame ionization detector (FID) for the determination of
aromatic isomers in a jet fuel. The application of GRAM allowed
for the separation of the overlapped GC × GC peaks, whereas the
standard addition calibration corrected changes in peak widths and
retention times between samples and standards.

Finally, Vosough and Salemi [85] applied two second-order
calibration methods (GRAM and MCR-ALS) on standard addition
data matrices obtained by GC–MS, to characterize and quantify
fatty acids in fish oil, and the results obtained were compared.
As trilinearity is the essential requirement for implementing
GRAM a retention algorithm was applied with similar results to
those obtained by MCR-ALS. In both cases, the combination of
second-order calibration methods with standard addition calibra-
tion showed the great potential of these approaches as an efficient
way for solving matrix effect in GC–MS in complex samples.

4.2. Standardization

There are several reasons to implement transference of mod-
els (standardization), which include the following examples: (a)
need to transport a calibration model previously built on the first
instrument to another; (b) changes in the instrument over time; (c)
variation between samples from different production batches; and
(d) situations when necessary sample treatments such as extraction
or clean-up steps are carried out [86]. The latter case was observed
with different extraction techniques such as solid-phase extrac-
tion (SPE) [59,60,64] and solid-phase microextraction (SPME) [61].
These sample treatments are necessary to increase sensitivity of the
analytical methods when analytes are present at ultratrace levels
in the samples being analyzed. However, in some cases, the treat-
ment step causes partial losses or changes in the response signal
of analytes. This drawback would be overcome by undergoing the
analytical standards to the SPE step, but this option demands con-
siderable both time and cost, which makes advisable the use of
transference models. By applying standardization, only a reduced
number of the whole calibration samples in the real situation is
necessary for building a useful model to predict new real sample

signals.

PDS was applied to correct the breakthrough effect observed for
the most polar analytes after the SPE step in a method developed
for the determination of eight tetracyclines in effluent wastew-
ater samples by solid-phase extraction (SPE) and LC-DAD using
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CR-ALS [60] and U-PLS/RBL [61] algorithms. The five first eluting
ompounds were partially lost during the pre-concentration step
nd this drawback was overcome by transferring sample signals
btained from standards prepared in pure solvent to signals after
PE and then, unknown samples were predicted with models built
ith the former.

Very recently, Vosough et al. [64] used PDS combined with
ARAFAC algorithm to quantify four alfatoxins in extract of pis-
achio nuts by LC-DAD, in the presence of interferences remaining
fter SPE. PARAFAC dealt with the problem caused by non-modeled
nterferences and a transferred calibration data set, obtained from
tandardization of solvent based calibration data, was used in the
rediction step. Using these approaches, the cost per analysis was
lso significantly reduced.

PDS combined with MCR-ALS was also applied in the deter-
ination of seven non-steroidal anti-inflammatory drugs and one

nticonvulsant in river and wastewater by SPME-LC-DAD [61]. In
PME, standards and samples must be processed in the same way,
hich increase the error in handling, leading to the fact that the
ain source on uncertainty is that associated with the calibration

tep [87], along with an increase in the time spent in the calibration
tep. In order to avoid the pre-concentration of the calibration stan-
ards, PDS was applied to transform the signal obtained from direct

njection of standards in the LC-DAD system to the signals obtained
y standards prepared in Milli-Q water and subjected to the SPME
tep. In the case of river water, PDS became a useful tool in reduc-
ng the number of standard samples which must be undergone to
PME for calibration, thus allowing quantifying pre-concentrated
iver water samples.

. Conclusions

Analytical chemistry involves the analysis of complex samples
hich currently needs sophisticated instrumentation and a num-

er of handling sample steps to accomplish the goal. The use of
owerful mathematical tools for data treatment is able to improve
he results, in addition to save time and cost in the total analytical

ethod.
Thus, background correction (including baseline drift and addi-

ive interferences) greatly improves spectral and elution profiles,
llowing the resolution and quantitation of analytes in complex
amples using second-order algorithms. In addition these algo-
ithms are useful when trilinearity is not accomplished by the data
nd time shift correction is not necessary.

Even though the drawbacks inherent to the standard addition
alibration method, this approach is a fairly effective methodol-
gy dealing with matrix effect, which has been successfully applied
n combination with second-order algorithms for the analysis of
omplex samples.

The standardization of second-order data sets allows to cor-
ect changes in the analytical signal after sample pre-treatments
n addition to reduce the number of standard samples that must be
repared for calibration when they must be undergone to the same
re-treatment that the samples.
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